If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-8x-69=0
a = 3; b = -8; c = -69;
Δ = b2-4ac
Δ = -82-4·3·(-69)
Δ = 892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{892}=\sqrt{4*223}=\sqrt{4}*\sqrt{223}=2\sqrt{223}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{223}}{2*3}=\frac{8-2\sqrt{223}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{223}}{2*3}=\frac{8+2\sqrt{223}}{6} $
| x+2.3x=100 | | 9x-20x=-55 | | (8x)/(2x-11)=8 | | -5=x(3.25) | | ×(10-x)=3.3 | | (1/64)^-8x+3=(1/16)^7x-2 | | 3(2+q)+15=0 | | 0.12y=0.09y+0.78 | | -3x+8x+10=-20 | | 4^x+5=86 | | X=4x-10=26 | | 15(7x-11)=20(4x-2) | | 21(x-1)=27(x-3) | | 1/2(x+10)-15=-3 | | 3/5⋅x=1 | | 8/11=x/10 | | 3.5=d=8 | | -2+23x=90 | | 107+x=97 | | 33x+4=103 | | (x+4)^2=2x^2+16x+23 | | 31x+6+12x+2=180 | | -9+2(x×6)=28 | | (x+4)(x+4)=2x(2x)+16x+23 | | X^2-2x-1008=0 | | 9.75=c=17.75 | | 0=12+0.5x | | (3-r)+(4-r)=5 | | 14(9x+1)=49(x+5) | | m+2m+(3(m+2m)+13+12=75 | | 7x-16=12x+9 | | 2(3x+4)=4x-1 |